
NASA Contractor Report 194938

ICASE Report No. 94-51

/

/

• .-"7.,',-'

IC S
A CARTESIAN GRID APPROACH WITH

HIERARCHICAL REFINEMENT FOR

COMPRESSIBLE FLOWS

James J. Quirk
(NASA-CR-194938) A CARTESIAN GRID
APPROACH WITH HIERARCHICAL
REFINEMENT FOR COMPRESSIBLE FLOWS

Final Report (ICASE} 2] p

N95-10943

Unclas

G3/64 0022777

Contact NAS1-19480
June 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association





A Cartesian Grid Approach

with Hierarchical Refinement

for Compressible Flows

James J Quirk 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681, USA.

ABSTRACT

Many numerical studies of flows that involve complex geometries are limited by the

difficulties in generating suitable grids. We present a Cartesian boundary scheme for

two-dimensional, compressible flows which is unfettered by the need to generate a

computational grid and so it may be used, routinely, even for the most awkward of

geometries. In essence, an arbitrary-shaped body is allowed to blank out some region

of a background Cartesian mesh and the resultant cut-cells are singled out for special

treatment. This is done within a finite-volume framework and so, in principle, any

explicit flux-based integration scheme can take advantage of this method for enforcing

solid boundary conditions. For best effect, the present Cartesian boundary scheme

has been combined with a sophisticated, local mesh refinement scheme, and a number

of examples are shown in order to demonstrate the efficacy of the combined algorithm

for simulations of shock interaction phenomena.

1This research was supported by the National Aeronautics and Space Administration under

NASA Contract No. NASl-19480 while the author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA

23681.





_

1 INTRODUCTION

Of the three basic strategies that have been employed to compute flows with complex

geometries, the Cartesian boundary approach has received the least attention; in con-

trast, both the unstructured mesh approach (e.g. [1] and the composite body-fitted

grid approach (e.g. [2]) have large followings. This lack of attention is surprising given

its conceptual simplicity. Admittedly, a number of obstacles have to be overcome so

as to produce a working scheme, but this is also true of the other two approaches.

For example, it is very difficult to automate the process of generating composite grids

for genuinely complex geometries, and the resultant inter-grid boundaries complicate

the method of flow solution[3]. Similarly, there is evidence to suggest that the un-

structured grid approach is slightly at odds with the requirements of the flow solver.

For example, for strong shock waves, unstructured grid schemes suffer larger phase

errors than do structured grid schemes[4].

In this paper, we present a general purpose Cartesian boundary method for com-

puting shock interactions that involve complex geometries. It will become clear that

this method relies more on sophisticated logic than on sophisticated mathematics.

Indeed, the biggest drawback of the Cartesian boundary approach, and one which

will always act to limit its following, is the fact that there is no concise recipe. The

method relies on being able to handle exceptions and is therefore much more verbose

than say an unstructured grid method. In part, this explains why most Cartesian

schemes only work for stylized geometries where the necessary logic is greatly reduced

and the development costs are low. The strength of the present method lies in its

ability to cope with truly arbitrary geometries.

Space does not permit us to provide an adequate survey of existing Cartesian

boundary schemes, and so the following references, whilst not completely exhaustive,

should suffice to indicate research activity in this area[5]-[19]. Where appropriate,

direct references will be made to some of these works in the main text. Moreover,

since a detailed description of our scheme has already appeared in the literature[17],

here we only elaborate on those aspects of the scheme which appear to have caused

some confusion. Therefore we recommend that this paper be read in conjunction with

the original article so that it does not appear disjointed.

The rest of this paper is as follows. In the next section, we outline certain com-

ponents of our Cartesian boundary scheme, and we endeavour to reveal the obstacles

that shaped them. For practical purposes, any Cartesian boundary scheme must

be combined with some form of local mesh refinement. Otherwise, the background



-2-

mesh would in general require an inordinate number of cells just to unambiguously

determine the input geometry. In Section 3, we present our preferred form of mesh

refinement - the Adaptive Mesh Refinement (AMR) algorithm[20]. Following which,

in Section 4, examples are given to demonstrate the efficacy of the present com-

bined Cartesian boundary-mesh refinement scheme for investigating shock interaction

phenomena. Finally, in Section 5 some conclusions are drawn concerning Cartesian

boundary schemes.

2 CARTESIAN BOUNDARY SCHEME

We first reconsider the seemingly innocuous problem of determining which cells of the

background mesh are blanked out by the input geometry. Then we re-examine the

method by which we overcome the stability problems due to the presence of arbitrarily

small cut-cells. Finally, we outline how our method can be extended to cope with

moving bodies

2.1 Geometric Considerations

The first step in any Cartesian boundary scheme is to determine which mesh cells lie

inside, outside or on the solid boundaries specified as input. The sophistication of this

step will largely determine the performance of the overall algorithm. The simplest

strategy is to approximate the boundaries by a series of steps, thus there are only

two types of cells: solid cells which lie wholly inside a body, and uncut cells which

lie wholly outside a body. Unfortunately, this simple strategy does not work well in

general, because the corrugations along the approximation to a curved boundary will

inevitably cause acoustic disturbances which pollute the flow solution. However, Falle

& Giddings[10] have shown that the introduction of some viscosity can restrict such

disturbances to a narrow boundary layer, and so this method should not be rejected

out of hand. We elected to allow cut-cells, thus solid boundaries are approximated

by a series of straight line segments. This approach requires us to find the actual

intersection points between the background grid and the input geometry, by tracing

its outline. Superficially this task seems straightforward. But, if due care is not

taken, round-off errors will cause problems such as an intersection point being missed

or duplicated.

Although such problems are rare, a robust scheme must prevent them from ever

happening or at least ensure that nothing untoward occurs as a result. We elected to



-3-

dispense with round-off error altogether and developed a procedure that would find

the intersection points relative to a discrete lattice using only exact operations[17].

Thus complete control is exercised over the process of determining the intersection

points and so no point can ever be missed or duplicated. On the other hand, Rice[21]

attempted to overcome round-off problems by basically employing tolerances when

making floating point comparisons. This solution results in too many restrictions oil

the input geometry (see [21]) and, in our opinion, is inelegant. It may even be slightly

dangerous in that it is not machine independent. For example, consider what might

happen if the intersection points are found using a heterogeneous parallel computing

system. If an intersection lies in the vicinity of a processor partition boundary, it is

conceivable that only one of the affected nodes will find the intersection and so there

will be an inconsistency. Admittedly, corrective action could be taken by some fix-

up procedure, but this would introduce the unnecessary overhead of inter-processor

communication. In general, it is far better to circumvent problems than to attempt

to cure them when they occur.

Once all the intersection points are found, they must be collated so as to determine

the nature of the cut cells. For simplicity, we elected to handle only the three basic

types of cell formed from the intersection of a single straight line segment, which

together with the four possible orientations gives the twelve types of cut-cell shown

in Figure 1. Note that we do not allow corners to occur within a cell.

A B C D E F

a b c d • f

Figure 1: Basic types of cut-cell.

Since there is no limit to the number of intersections that might occur for a given

cell, its type is generally determined from its first and last intersection points as shown

in Figure 2. Under normal circumstances, a cell having more than two intersection

points merely indicates that the mesh is too coarse to resolve the input geometry

properly, in which case, we locally refine the mesh so as to get a better representation

of the boundary.

In certain circumstances, say near cusps, some cells are found to be degenerate

and a blunting procedure is applied in order to remove the degenerate cells from the

boundary representation, see Figure 3.1. Here the degree of blunting is excessive and



-4-

I

2

Type-A Type--C

Figure 2: Collation of intersection points.

could be reduced by introducing further cell-types but this would further complicate

what is already a fairly busy scheme. Instead, as shown in Figure 3.2, we employ

local mesh refinement to reduce the blunting to an acceptable level.

(1)

ilLl I I I

(2)

b_ nm

I1111
lilll
[llll i

Figure 3: Local mesh refinement is used to control the blunting of sharp corners.

This blunting procedure has come in for some criticism since it is perceived to alter

the input geometry[22]. But, if it is used in conjunction with local mesh refinement,

any alterations are on a scale so small as to be masked by the inherent dissipation of

a shock-capturing scheme. In effect, numerical diffusion results in a small separation

bubble to round off any singularity in the input geometry. Thus our blunting pro-

cedure, if used sensibly, has minimal affect on the flow solution, and results given in

Section 4 substantiate this claim. Besides, at a more philosophical level, one could

argue that if such alterations did matter, no simulation could ever hope to reproduce

an experiment since no very sharp corner is precise in its manufacture. But this

runs against common experience and so imperceptible alterations do not matter: any

discretization is but an approximation to the input geometry.

As will be shown in Figure ll, our two-dimensional Cartesian boundary scheme

is able to handle arbitrary geometries, automatically. Yet we have not attempted to

extend the method to three-dimensions, simply because the task of determining the



-5-

cut-cell types will dominateproceedings,and our interestsare of a more fluid dynam-

ical nature. The simplest strategy would be to produce some surface triangulation of

the object of interest and compute the intersections with the Cartesian mesh triangle

by triangle. But unless the triangles are much smaller than the smallest mesh cell

used for the computation, this strategy will prove unsatisfactory because one will

just resolve the triangular facets and not the true surface geometry. Moreover, with a

local refinement scheme it may not be possible to predict ahead of time how small the

smallest cell will be. Melton et a/.[14] have adopted the only sensible approach and

are using a commercial CAD package to provide the correct surface representation.

However, such packages are usually proprietary and are therefore difficult to obtain

for research purposes.

Whereas Melton et al. are using a surface representation and are laboriously

developing the machinery to compute the grid intersection points themselves, we

would advocate using a solid modeller based on a Polygonal-Map octree[23]. Such

modellers could provide the cut-cell information directly. In effect, they represent an

object by a number of cuboidal elements, maintaining the precise surface geometry

of each element. If the elements were made small enough, say to match the size

of mesh cell needed for a fluids computation, the nature of most cut-cells would

follow immediately. Although, a blunting procedure might have to be applied so as

to remove certain degenerate elements as is done in two-dimensions. Given such a

package the extension of our Cartesian boundary scheme to three-dimensions would

be straightforward.

2.2 Stability Considerations

Since cut-cells can be arbitrarily small, a Cartesian boundary scheme must address

the stability problems caused by having disparate cell sizes. For steady-state compu-

tations, De Zeeuw & Powell[19] have demonstrated that straightforward local time-

stepping is sufficient to ensure stability. On the other hand, unsteady flow compu-

tations require a more sophisticated strategy. For example, Berger & Le Veque[6]

utilized a large time-step generalization of Godunov's method which keeps track of

individual waves as they move across the mesh. This scheme does not suffer an ex-

plicit restriction on the size of stable time step and so very small cut cells can be safely

integrated at the time step used to integrate uncut cells. As an alternative, Pember et

al.[15] redistribute part of the computed updates for small cut cells to neighbouring

cells, following certain rules which ensure stability. As yet another alternative, we



-6-

(1)

Figure 4: A merging strategy is used to remove small cells.

employ a cell merging technique which is a generalization of the method employed

by both Clarke et a/.[8] and by Chiang et al. [7]. Ultimately, whatever method is

chosen, it must work in the most general of cases, otherwise it negates the principal

motivation for developing a Cartesian boundary scheme: the promise of being able

to handle arbitrary geometries in a completely automatic fashion.

To see how our approach works in the simplest case, consider Figure 4.1. Suppose

an update is computed for each cell using a one step finite-volume scheme. The

updates to the conserved variables, AWa and AWb, may be written

AW_ - At At
V_ _ F.A and AWb- F.A

faces a Vb 'faces b

where V_ and Vb are the volumes of the cells, and F is the flux acting through the

face A. If the time step At is based on the size of the uncut cell b, the solution within

a will be unstable. To ensure stability, the updates for the two cells are replaced by

some fraction of their volume-weighted average. Since the volume weighted average

is equivalent to the update that would have been computed for the composite cell

shown in Figure 4.2,

V_AW_ + VbAW_ At

V_+Vb = V_ _ F.A,
facefl c

the appropriate fractions are _ for cell a and _ for cell b. Thus, effectively

we would have a grid that contains the cell c instead of the two cells a and b. Although

this merging process inevitably reduces the accuracy of the integration scheme at solid

boundaries, Coirier & Powell[9] have shown that it does not affect the global accuracy.

Also, if needs be, the local loss in accuracy can be recovered using mesh refinement.

The generalization of this method rests on finding a set of lists, where each list

identifies a group of cells that need to be merged together so that certain small cut-



-7-

cells do not causeinstabilities, see [17] for the details. Note that a list can contain

several cells, but no one cell appears in more than one list. The cut-off point for

determining whether a cell is small or not is completely arbitrary. In practice, we

have found that cells larger than half the size of an uncut cell do not cause problems

and so are not deemed to be small. Note that our procedure is just a convenient

method for computing updates for awkward shaped cells from a small number of

fixed cell-types for which the update is well defined and easily coded.

For example, a type-A cell has just three sides. The flow solution in such a cell can

be reconstructed using the method proposed by De Zeeuw & Powell[19]. Following

which, it is a straightforward matter to compute the three fluxes acting on these

faces, using one's favourite upwind scheme. Note, as is common practice, the flux for

the boundary face is computed by reflecting the normal momentum at the wall. The

cell-update then follows trivially to be used later on by the cell merging procedure.

Given that no one cell appears in more than one combination list, our integration

procedure is conservative.

2.3 Extension to Moving Bodies

The next logical step in the development of our Cartesian boundary scheme is its

extension to moving bodies. Like most components of the scheme this extension is

simple in concept, but awkward to implement in a foolproof manner, and our own

efforts have been stymied by other research commitments. Nevertheless, we outline

the strategy that we have devised[24] and note that it is basically the same as that

devised by Bayyuk et al.[5]. Whilst the strategy is clear, certain implementation

details need to be ironed out.

Consider a body which is moving relative to a background Cartesian mesh, say

in a north westerly direction. Figure 5 shows some of the changes that a cell might

undergo during a time step from t" to t TM. If the cell has the same type at the end

of the time step as it did at the start, the cell may be integrated trivially using the

following finite-volume discretization

vn+lwn+l = vnw n- /'_t _ F".A - (O,O,O,p)'(V ''+_ - V").
f _Ce$

Here V" and V '_+1 are the volumes of the cell at the start and end of the time step

At. W is the conserved variable vector per unit volume, and F" is the flux through

a face whose average area is A over the course of the time step. Similarly, p is the

average pressure which acts on the solid boundary and so the last term is effectively



-8-

the work done by the boundary displacing a volume of fluid (V "+1 - V'_). Difficulties

only arise if the cell changes type during the time step as is the case for three of the

examples in Figure 5.1.

(1)

(2)

xm
B "=*"B B -_ f A"_ Solid Uncut-'B

Figure 5: If a body moves, individual cells may change type.

The solution trick is to find groups of cells such that the type for the group

remains constant over the time step as shown in Figure 5.2. Then the above finite-

volume discretization may be applied straightforwardly to the composite cell. To see

how this may be implementated in the general case consider Figure 6. Figure 6.1

shows the outline of some body at the start and end of a time step. Figure 6.2 shows

two curves C1 and C2 which are the external hulls of those cells which are cut at either

t '_ or t n+l. If the body is non-deformable, these curves cannot cross. The problem of

finding suitable combination groups is reduced to connecting up C1 and C2 along the

co-ordinate lines as shown in Figure 6.3. In this case, Figure 6.4 shows the resultant

groups. Some of these combination groups may then have to be merged with other

cells, as in the previous section, to ensure stability.

Although the above procedure is straightforward, it has proven difficult to code

in a manner that matches the generality of the rest of the algorithm. Moreover, it

has certain inherent limitations that some may find objectionable. For example, the

procedure to find the combination groups is not unique. Consider the case where a

planar piston is moving at 45 ° to the mesh, see Figure 7. If care is not taken, the

combination groups could alternate between running vertically and running horizon-

tally. This would result in information propagating along the face of the piston at

non-physical speeds. Bayyuk et al.[5] identify some other weaknesses.

Although the extension to moving bodies clearly has some weaknesses, the early

results are encouraging and we feel this approach is worth persuing, especially given

the the exciting new applications that it would open up.



-9-

(1) (2)

(3) (4)

Figure 6: Strategy for finding groups of cells whose type remains constant when a

body moves.

Figure 7: Problems could arise, if combination cells alternate in orientation.

3 THE AMR ALGORITHM

The Adaptive Mesh Refinement (AMR) algorithm is a general purpose scheme for

integrating systems of hyperbolic partial differential equations. It attempts to reduce

the costs of integration by matching the local resolution of the computational grid to

the local requirements of the solution being sought. The foundations of the algorithm

lie with the work of Berger & Colella[25], but the derivative outlined here is due to

Quirk[20].

The AMR algorithm employs a hierarchical grid system. In the following, the

term 'mesh' refers to a single topologically rectangular patch of cells and the term

'grid' refers to a collection of such patches. At the bottom of the hierarchy a set of

coarse mesh patches delineates the computational domain. These patches form the



-10-

grid Go and they are restricted such that there is continuity of grid lines between

neighbouring patches. This domain may be refined locally by embedding finer mesh

patches into the coarse grid Go. These embedded patches form the next grid in the

hierarchy, G1. Each embedded patch is effectively formed by subdividing the coarse

cells of the patches that it overlaps. The choice for the refinement ratio is arbitrary,

but it must be the same for all the embedded patches. Thus, by construction, the

grid Ga also has continuity of grid lines. This process of adding grid tiers to effect

local refinement may be repeated as often as desired, see Figure 8.

From stability considerations, many numerical schemes have a restriction on the

size of time step that may be used to integrate a system of equations. The finer the

mesh, the smaller the allowable time step. Consequently, the AMR algorithm refines

in time as well as space. More but smaller time steps are taken on fine grids than

on coarse grids in a fashion which ensures that the rate at which waves move relative

to the mesh (the Courant number) is comparable for all grid levels. This avoids the

undesirable situation where coarse grids are integrated at very small Courant numbers

given the time step set by the finest grid's stability constraints.

plan view

perspective view

Figure 8: The AMR algorithm employs a hierarchical grid system.



-11-

The field solution on each grid is retained even in regions of grid overlap and so all

grid levels in the hierarchy coexist. The order of integration is always from coarse to

fine since it is necessary to interpolate a coarse grid solution in both time and space

to provide boundary conditions for its overlying fine grid. The various integrations at

the different grid levels are recursively interleaved to minimize the span over which

any temporal interpolation need take place. Periodically, for consistency purposes, it

is necessary to project a fine grid solution on to its underlying coarse grid. Figure 9

shows the sequence of integration steps and back projections for a three level grid

{Go, Gl, G_} with refinement ratios of 2 and 4.

INTEGRATION TIME STEP

Go At

G1 At�2

4xG2 4 x,St/8

GI At�2

4xG2 4x z_t/8

PROJECTION

G2 --_ G1

ADAPTION

G2

G2

G1

Figure 9: Grid operations are recursively interleaved (to be read from top to bottom).

The integration of an individual grid is extremely simple in concept. Each mesh is

surrounded by borders of dummy cells. Prior to integrating a grid, the dummy ceils

for every mesh patch in the grid are primed with data which is consistent with the

various boundary conditions that have to be met. Each mesh patch is then integrated

independently by an application dependent, black-box integrator that never actually

sees a mesh boundary. Thus, in principle, any cell-centred scheme developed for a

single topologically rectangular mesh can form the basis for the integration process.

In general it is necessary to adapt the computational grid to the changes in the

evolving flow solution and so the grid structure is dynamic in nature. Monitor func-

tions based on the local solution are used to determine automatically where refinement

needs to take place so as to resolve small scale phenomenal20]. For example, Figure 10

shows several snapshots taken from the simulation of a shock wave diffracting around



-12-

a corner. Each snapshot shows the outlines of the mesh patches which go to make

the finest grid. This grid clearly conforms to the main features of the flow, namely

the diffracted shock front and the vortex located at the apex of the corner. Although

the changes in grid structure shown here are dramatic, many adaptions have taken

place between each frame. A large number of small grid movements occurs because

the adaption process dovetails with the integrations process, see Figure 9. Note that

the adaption always proceeds from fine to coarse so as to ensure that there is never

a drop of more than one grid level at the edge of a fine grid to the underlying coarse

grid. A grid adaption essentially produces a new set of mesh patches which must

be primed with data from the old set of patches before the integration process can

proceed. Where a new patch partially overlaps an old patch of the same grid level,

for the region of overlap, data may be simply shovelled from the old patch to the

new patch. In regions of no such overlap, the required field solution is found by

interpolation from the underlying coarse grid solution.

(a) (2)

(3) (4)

Figure 10: The AMR algorithm employs a dynamic grid system.

In a typical application the finest grid will contain several hundred mesh patches.

Thus, the mesh patch is a sufficiently fine unit of data for efficient parallelism. The

parallel AMR algorithm[26] is implemented using a Single Program Multiple Data



-13-

(SPMD) model. Eachprocessingnodeexecutesthe basicserial algorithm[20] in iso-
lation from all other nodes,except that at afew key points messagesaresentbetween

the nodesto supply information that an individual nodedeemsto bemissing, that is

off-processor.For example,during the integration of a grid, the only point at which a

processorneedsto know about other processorsis during the priming of the dummy

cells. Whereasin a serialcomputation all data fetchesarefrom memory,for a parallel

computation someare from memory and somenecessitatereceivinga messagefrom

another processor.Each time the grid adapts, the algorithm generatesa scheduleof

tasks that have to be performedso asto prime correctly the dummy cells of a given

grid. If running in parallel, this scheduleis parsedto produce a scheduleof those

tasks that necessitateoff-processorfetches. At which point, individual processors

can exchangesubsetsof their fetch schedules,asappropriate, so that everynode can

construct a scheduleof messagesthat it must send out at somelater date. Thus,

the priming processis carried out in two phases.First, all the local data fetchesare

performedasfor the serialcase.Second,eachnodesendsout the data that hasbeen

requestedof it. The nodethen waits for thosedata items it has requested.For each

incoming messageit can readily determine from its own scheduleswhat to do with

the off-processordata, andsothe orderin which messagesarrive is unimportant. The

adaption processand the backprojection of the field solution betweengrid levelsalso
necessitatesizeableamountsof communication,thesearehandledin a similar fashion

to the priming of the dummy cells.

The problem of load balancing the AMR algorithm rests on determining the best

distribution of the new patchesamongstthe processingnodesbeforethe newfield so-

lution is interpolatedfrom the old field solution. Currently, this is doneusingheuristic

procedures[27]which bear strong similarities to classical'Bin Packing' algorithms[28]

with the addedcomplication that they must accountfor the communicationcostsof
data transfer betweennodes.

The main advantageof the AMR algorithm is that the processingwithin a patch

canproceedlargelywithout knowledgeof the method of parallelization or knowledge

of the treatment of meshboundaries, and so it is extremely simple to changethe

basicmethod of flow integration. Thus the present Cartesianboundary schemecan

utilize the algorithm more or lessdirectly. Except that there is a small amount of

additional book keeping to account for the fact that somegroups of combination

cells may straddle more than one processor.But this complication is not great and

introducesvery little data traffic.



- 14-

4 RESULTS

All the simulations reported in this section were done by integrating the Euler equa-

tions using the present Cartesian boundary scheme in conjunction with the finite-

volume method described in [17]. Each computation was performed in parallel on a

cluster of five Silicon Graphics workstations (Indigo 2, MIPS 4400).

In order to demonstrate that our scheme can cope with arbitrary two-dimensional

geometries, we have computed the interaction of a planar shock wave, Ms = 1.5

and '7 = 1.4, with the logo 'AMR Q ECCOMAS 94'. Although this example is

unashamedly gratuitous it serves to demonstrate the capabilities of the scheme. The

whole exercise from conception to completion took just seven hours and involved no

special intervention on our part. Figure 11 shows a schlieren-type snapshot from this

simulation. The background Cartesian mesh was nominally equivalent to a uniform

mesh of 1920 by 600 cells and so the flow field is well resolved and many fundamental

shock interaction phenomena are clearly visible.

Whilst spectacular, given the impossibility of verifying the results, this simulation

is rather meaningless. Therefore, on a more serious note, we present two schlieren-

type images from a simulation of the focusing of a weak shock wave, Ms = 1.2

and 7 = 1.4, by a parabolic reflector, see Figure 12. These images compare well

with experiment (see, Figures 3 (a) and 3 (f) of [29]) and so the integrity of the

simulation is beyond doubt. In this case, although the geometry is relatively simple,

a topologically uniform body-fitted grid would be severely distorted. Since such

distortions could have an adverse affect on the quality of the simulation, it follows

that a Cartesian boundary scheme need not be reserved for geometrically complex

problems.

To investigate the potential vagaries of the blunting procedure which is applied to

sharp corners, we have simulated the diffraction over a knife edge of a Ms = 1.5 planar

shock wave. This flow gives rise to a vortex sheet which emanates from the tip of the

knife edge[30]. Figure 13 shows a sequence of schlieren-type images for various stages

in the development of the vortex sheet. Frames 1-5 were taken from a computation

for which the knife edge was blunted. The computation was then repeated with the

knife edge positioned so that it was not blunted, see Figure 14. Qualitatively, the

differences in the two solutions are minor; c.f Frame 5 (with blunting) and Frame 6

(without blunting).

Generally speaking, a fluid dynamicist would be more concerned about the validity

of simulating a viscous phenomena inviscidly. Consequently, although the solution is



- 15-

S

Figure lh The algorithm can cope with arbitrary geometries: flow around 'AMR @

ECCOMAS 94'!



- 16-

Figure 12: Two schlieren-typesnapshotsfrom the focusingof a weakshockwave.



(1)

(3) (4)

(5) (6)

Figure 13: Evolution of a vortex sheet due to a shock wave diffracting over a knife

edge.



-18-

Figure 14: The tip of the knife edge with and without blunting.

sound, one should be careful in attaching too much credence to the minutiae at late

times in the simulation since these are controlled by vestigial numerical diffusion and

will thus vary from scheme to scheme. Indeed, for the vortex produced by a Ms = 1.5

shock wave diffracting around a 90 ° corner, the variations in structure with changes

in numerical scheme are far greater than the changes here due to blunting[31].

5 CONCLUSIONS

While a Cartesian boundary-cum-mesh refinement approach can undoubtedly pro-

duce spectacular results, it must be realized that there is no concise recipe for suc-

cess. Consequently, we feel that the high development costs will continue to act as

a deterrent and so limit the popularity of this approach. Nevertheless, if maximum

resolution is sought, the advantages of the present scheme far outweigh its develop-

ment costs. Moreover, since the basic machinery is not tied to any one integration

scheme and it forms a reliable framework that can be readily exploited by a variety

of applications, the effective costs are to some extent diminished. As they are every

time the method is used, simply because there are no longer any grid generation costs

to worry about.

It is also worth noting that a Cartesian boundary scheme becomes more efficient as

the resolution of the computation increases, because the cut-cells occupy an increas-

ingly smaller volume in space and therefore introduce less of an overhead. Moreover,

a Cartesian scheme does not distort the mesh in sensitive parts of the flow field, as

sometimes happens with body-fitted grids to the detriment of the computed solution.

Finally, despite its logical complexity we have demonstrated that the present

scheme can exploit parallel computing engines efficiently and so it is not likely to

be overtaken by advances in computer architectures which would make it redundant.



- 19-

Acknowledgements

I would like to thank Drs. S. Karni, K.G. Powell and V.Venkatakrishnan for their

comments which helped improve this paper. This paper will appear in the proceedings

volumes of ECCOMAS 94, published by John Wiley and Sons Limited.

References

[1] R. L5hner, Adaptive H-refinement on 3-D unstructured grids for transient prob-

lems. AIAA Paper 89-0653 (1989).

[2] J.L. Steger and J.A. Benek, On the use of composite grid schemes in computa-

tional aerodynamics. Computer Meth. Appl. Mech. Eng., 64(1987), pp. 301-320.

[3] J.F. Thompson and N.P. Weatherill, Aspects of numerical grid generation: cur-

rent science and art. AIAA Paper 93-3539-CP (1993).

[4] P.R. Woodward, Proc. Nato workshop in Astrophysical Radiation Hydrodynam-

ics, Munich, Germany. Nov. 1983.

[5] S.A. Bayyuk, K.G. Powell and B. van Leer, A simulation technique for 2-D un-

steady inviscid flows around arbitrarily moving and deforming bodies of arbitrary

geometry. AIAA Paper 93-3391-CP (1993).

[6] M.J. Berger and R.J. LeVeque, An adaptive Cartesian mesh algorithm for the

Euler equations in arbitrary geometries. AIAA Paper 89-1930-CP (1989).

[7] Y-L. Chiang, B.van Leer and K.G. Powell, Simulation of unsteady inviscid flow

on an adaptively refined Cartesian grid. AIAA Paper 92-0443 (1992).

[8] D.K. Clarke, M.D. Salas and H.A. Hassan, Euler calculations for multielement

airfoils using Cartesian grids. AIAA Journal, Vol. 24(1987), No. 3, pp. 353-358.

[9] W.J. Coirier and K.G. Powell, An accuracy assessment of Cartesian-mesh ap-

proaches for the Euler equations. AIAA Paper 93-3335-CP (1993).

[10] S.A.E.G. Falle and J. Giddings, Body capturing using adaptive Cartesian grids.

Numerical Methods in Fluid Dynamics 4, Clarendon press, Oxford (1993), pp.

337-343.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

- 20 -

A.D. French, Solutions of the Euler equations on Cartesian grids. Ph.D. thesis,

College of Aeronautics, Cranfield Institute of technology (1991).

R.L. Gaffney, H.A. Hassan and M.D. Salas, Euler calculations for wings using

Cartesian grids. AIAA Paper 87-0356-CP (1987).

B.P. Gerasimov and S.A. Semushin, An Eulerian method for calculation of gas

motion in a Varying Region. Lecture Notes in Physics, Vol. 170(1982), p. 211.

J.E. Melton, F.Y. Enomoto and M.J. Berger, 3D automatic Cartesian grid gen-

eration for Euler flows. AIAA Paper 93-3386 (1993).

R.B Pember, J.B. Bell, P. Colella, W.Y. Crutchfield and M.L. Welcome, Adaptive

Cartesian grid methods for representing geometry in inviscid compressible Flow.

AIAA Paper 93-3385-CP (1993).

A. Priestley, Roe's scheme, Euler equations, Cartesian grids, non-Cartesian ge-

ometries, rigid walls and all that. Univ. Reading, Dep. Math., Num. Anal. Rep.

14/87, (1987).

J.J. Quirk, An alternative to unstructured grids for computing gas dynamic flows

around arbitrarily complex two-dimensional bodies. Computers & Fluids, Vol.

23(1994), pp 125-142.

D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant and

J.E. Bussoletti, A locally refined rectangular grid finite-element method: appli-

cation to computational fluid dynamics and computational physics. J. Comput.

Phys., 62(1991), pp. 1-66.

D.DeZeeuw and K.G. Powell, An adaptively refined Cartesian mesh solver for

the Euler equations. J. Comput. Phys., 104(1993), pp. 56-68.

J.J. Quirk, An adaptive grid algorithm for computational shock hydrodynamics.

Ph.D. thesis, College of Aeronautics, Cranfield Institute of technology (1991).

J.R. Rice, Numerical computation with general two dimensional domains. ACM

Trans. Math. Software, Vol. 10(1984), pp 443-452.

J.R. Rice, Private Communication, August 1992.

J.D. Foley, A.van Dam, S.K. Feiner and J.F. Hughes, Computer graphics, prin-

ciples and practice. 2nd edn. Addison Wesley (1990), p.555.



-21 -

[24] J.J. Quirk, AGARD mission #2C20622, December 1992.

[25] M.J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrody-

namics. J. Comput. Phys., 82(1989), pp. 67-84.

[26] J.J. Quirk and U.R. Hanebutte, A parallel adaptive mesh refinement algorithm.

NASA CR-191530, ICASE Report No. 93-63, (1993).

[27] J.J. Quirk, Dynamic load balancing strategies for parallel adaptive mesh refine-

ment. In preparation.

[28] R.L. Graham, Bounds on certain multiprocessing anomalies. SIAM J. Appl.

Math., 17, No. 2 (1969), pp 416-429.

[29] B. Sturtevant and V.A. Kulkarny, The focusing of weak shock waves. J. Fluid

Mech., 73 part 4 (I976), pp. 651-67I.

[30] M. van Dyke, An album of fluid motion. The Parabolic Press, Stanford, Califor-

nia, 1992, p. 49 and p. 145.

[31] Shock Waves, An International Journal, 1 No.4 (1991).



REPORT DOCU M ENTATION PAGE I Form Approved

I OMB No. 0704-0188

Public reportingburdenfor thiscollection of informationisestimatedto average1 hourper response,includingthe time for reviewinginstructions,searchingexistin&data sources,
gatheringand maintainingthe data needed andcompletingand reviewing the collectonof nformalon Sendcommentsregardng this burdenestimateor anyotheraspectof this
collectionof information,mcluding suggestionsfor reducingthis burden to WashingtonHeadquartersServices Directorate for Information Operationsand Reports 1215Jefferson
Davis Highway,Suite 1204, ArlinlFon,VA 22202-4302.and to the Officeof ManagementandBudget. PaperworkReduct onProject (0704-0188). Washington. DC 20503

I'AGENCYUSEONLY(Leaveblank)I2"REPORTDATEjune 1994 1 3" REPORT TYPE AND DATESCoVEReoContractorReport

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A CARTESIAN GRID APPROACH WITH HIERARCHICAL

REFINEMENT FOR COMPRESSIBLE FLOWS

6. AUTHOR(S)

James J. Quirk

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Institute for Computer Applications in Science

and Engineering

Marl Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-51

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-194938

1CASE Report No. 94-51

11. 5UPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

Submitted to European Community Computational Mechanics Symposium

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable

grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows which is unfettered by the

need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries.

In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the

resultant cut-ceils are singled out for special treatment. This is done within a finite-volume framework and so, in

principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary

conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local

mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined

algorithm for simulations of shock interaction phenomena.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

qSN 7540-01-2110-5S00

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

IS. NUMBER OF PAGES

23

16. PRICE COOE

A03

19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 249)
PrescribedbyANSI Std. Z39-18
298-102


